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a b s t r a c t

This paper presents a parallel Eulerian/Lagrangian multi-scale coupling procedure for
two-phase flows. At the fully resolved scale, the dynamically evolving phase interface is
tracked using a Eulerian approach. In regions of the flow, where the phase interface geom-
etry can no longer be resolved adequately, separated, small scale liquid structures are
described by a Lagrangian point particle approach. The coupling procedure of these two
descriptions consists of an efficient parallel algorithm that identifies tracked liquid candi-
date structures, removes them from the resolved Eulerian description, and inserts them
into the Lagrangian description preserving their position, mass, momentum, and lower
order shape. While in principle applicable to level set, Volume of Fluid, and marker particle
interface tracking methods for the fully resolved scale, this paper focuses on examples from
atomization simulations using the refined level set grid method.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Interfaces, like liquid/gas or liquid/solid phase interfaces, play a dominant role in many technical applications and natural
phenomena. Often times, the dynamics of these interfaces exhibit a vast range of length and timescales that make them dif-
ficult to model and numerically simulate. A prime example for this is the atomization of liquids both in technical applications
like engine injectors and natural phenomena like wave breaking. Here, length scales can span from the cm range on the scale
of the atomizer down to fractions of lm on the scale of the smallest drops. This represents a tremendous challenge to at-
tempts to simulate in detail the processes occurring during atomization, even on the massively parallel computational re-
sources available today [1].

To study atomization processes in realistic applications, it is thus necessary to introduce some level of modeling of the
phase interface dynamics that determine the outcome of the breakup process. From a modeling perspective atomization
is often split into two subsequent processes: primary atomization followed by secondary atomization. During primary atom-
ization, a liquid jet or sheet exits the injector, the phase interface deforms, topology change occurs, and separated small and
large scale liquid structures are generated. The liquid surface area during primary atomization is usually small whereas the
liquid volume loading is large, since large scale compact regions of pure liquid exist. The liquid structures then continue to
break up during secondary atomization into ever smaller drops. Due to surface tension forces becoming dominant on small
scales, these small scale liquid structures are typically of a simple geometry, i.e. either spherical or ellipsoidal. During sec-
ondary atomization, the total liquid surface area is usually large, whereas the liquid volume loading is small.

A wide variety of models has already been developed for the secondary breakup process. These are either based on
Lagrangian descriptions of the individual drops or parcels [2–8], or introducing an additional level of modeling, are based
on Eulerian methods derived from the Williams spray equation [9] describing the resulting spray’s statistics [10,11]. These
. All rights reserved.
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models have been very successful in describing flows where their underlying assumptions are met (simple drop geometry,
small individual drops). Unfortunately, these assumptions fail in the initial primary atomization region. To overcome this
shortcoming, a wide range of phenomenological models aiming to represent statistically the essential features of primary
atomization have been proposed. Although conventional phenomenological models introduce the mechanisms of the pri-
mary atomization of the liquid jet or sheet, i.e. surface instabilities [6,12–14], drop shedding [15], spontaneous breakup
[16], and jet turbulence [17], they still rely on a Lagrangian description using round blobs injected from the nozzle exit
and hence neglect all details of the phase interface dynamics and the resulting momentum and energy exchange between
the liquid and the gas. As such they typically employ adjustable parameters to tune the atomization outcome to experimen-
tally available data for representative flow conditions, a serious shortcoming to predictive simulations.

Alternatively, some efforts have been made in recent years to simulate the near injector region in detail [1,18–20]. To
achieve this, the position, geometry, and motion of the phase interface has to be described accurately, necessitating a track-
ing of the phase interface. Here the term tracking is used loosely, not only including traditional marker particles or interface
surface grids [21], but also encompassing methods that keep track of the position of the phase interface implicitly by solving
for additional marker variables, like the Volume of Fluid method [22], or the level set method [23]. In their original versions,
each method has its advantages and disadvantages, however, modern enhancements to each of the approaches [24–27] re-
sult in comparable accuracy and applicability to the problem of atomization.

However, due the range of length scales present during atomization and the vast number of generated small spray drops
and resulting large phase interface area, it is virtually impossibly to track the phase interface from the near injector region all
the way to the smallest generated drops far downstream of the injector. Detailed simulations tracking the phase interface are
thus limited to the primary atomization region [1].

To simulate in detail the atomization process in its entirety, some form of multi-scale coupling between the tracked phase
interface description suitable for the primary atomization region, and the Lagrangian description suitable for the secondary
atomization region is thus required. This coupling procedure is the focus of this paper. The resulting simulation strategy
tracks the details of the phase interface dynamics during primary atomization in the near injector region and transfers small
scale, nearly spherical, separated liquid structures into a standard Lagrangian spray description.

Yet, even following the above outlined approach, computational requirements are extreme, necessitating the use of mas-
sively parallel computer systems. It is therefore crucial that the proposed coupling procedure is both highly scalable and
efficient.

This paper is structured in the following way. After first introducing the parallel multi-scale Eulerian/Lagrangian coupling
procedure, test cases are presented that verify the procedure and demonstrate its overall efficiency and excellent parallel
scalability to thousands of processors. Then, an example application of the coupling procedure is presented, namely the
atomization of a turbulent liquid jet under diesel engine conditions. Finally, conclusions are presented.
2. Method

In this section, the Eulerian/Lagrangian coupling procedure for the case of a liquid/gas flow whose phase interface is
tracked by a level set approach is described. Regions of the computational domain where the level set scalar G is G > 0
are denoted as liquid, whereas regions with G < 0 are denoted as gas. The purpose of the coupling procedure is to identify
separated regions Xd of liquid in gas (or gas in liquid) fulfilling certain criteria, to remove these from the level set tracking
representation, and to insert them into a Lagrangian framework, preserving their volume Vd, center of mass xd, and momen-
tum qdud:
Vd ¼
Z

Xd

dx; xd ¼
1

Vd

Z
Xd

xdx; ud ¼
1

Vd

Z
Xd

uðxÞdx; ð1Þ
where qd is the constant liquid density. Removal criteria considered in this paper are based on the derivation assumptions of
typical Lagrangian spray models, i.e. that the individual drops be small and nearly spherical. Other transfer criteria are pos-
sible, for example criteria based on threshold Weber number, Capillary number, or drop internal fluctuation kinetic energy.
These could be used to indicate whether a liquid drop will continue to atomize. In the case of atomization, Lagrangian models
for continued atomization of initially spherical drops do exist, see the discussion in the introduction, hence these additional
criteria are not employed, here. However, ultimately, the choice of specific transfer criteria depends on the level of complex-
ity of the Lagrangian model employed.

The size criterium is expressed in terms of a threshold volume Vcut , in that only those separated liquid structures with
volume Vd 6 Vcut are candidates for removal. The shape criterium will be expressed in terms of an eccentricity measure
threshold ecut , where the eccentricity measure e is defined as the normalized maximum distance of a separated liquid struc-
ture’s phase interface Cd to its center of mass,
e ¼max
Cd

kx� xdk
maxðDxG;RdÞ

ð2Þ
where Rd ¼ 3=ð4pÞV1=3
d and DxG is the grid size. The maximum function in the denominator ensures that very small drops at

the resolution limit will not result in erroneously large eccentricity measures.
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The following sections outlining the coupling algorithms are based on the refined level set grid (RLSG) method introduced
in [25]. In addition to a flow solver grid, this method employs a separate, independent Cartesian grid, termed G-grid, for
tracking the phase interface using the level set approach. For efficiency a domain decomposed parallel dual-narrow-band
approach is employed. The key features of this method important for the proposed algorithm are presented in Fig. 1 and
are the following: the dynamically evolving RLSG G-grid is split into individual blocks that are distributed among the pro-
cessors partaking in the simulation. Each block consists of a Cartesian grid, of which only those nodes that are within a cer-
tain distance around the G ¼ 0 interface are active and exist. These active nodes form a narrow band surrounding the phase
interface. Similarly, only those blocks exist, that contain active nodes, forming a secondary block narrow band surrounding
the phase interface. Because the G ¼ 0 interface dynamically evolves in time, the location of active nodes and thus the loca-
tion of active blocks is constantly changing.

It is one of the assumptions in the derivation of standard Lagrangian point particle methods that the volume occupied by
the Lagrangian drop be significantly smaller than the local flow solver cell volume Vfs, which requires Vcut � Vfs. There exists
thus an apparent inconsistency since in the pre-transfer tracked representation one would like the drop to be well resolved
by the flow solver, implying Vd P Vfs, whereas in the post-transfer Lagrangian representation one would like the same drop
to be significantly smaller than the local flow solver cell, Vd � Vfs.

There are two different approaches to address this issue. One way is to use non-uniform flow solver meshes. Ideally, one
would adaptively adjust the local mesh size in such a way that directly after transfer, the flow solver grid is coarsened to such
an extend that the new Lagrangian drop becomes much smaller than the new flow solver grid cell. This is easily achieved by
using adaptive mesh refinement (AMR) techniques using the G ¼ 0 iso-surface as the refinement indicator. Without an AMR
approach for the flow solver, the employed static mesh has to be generated in such a way that the secondary atomization
region uses significantly coarser grids than the primary atomization region. This is a natural thing to do, since, after all,
the ability to use such a grid layout for efficiency reasons is the primary motivation for the proposed coupling procedure.
However, since in most applications, primary and secondary atomization regions are geometrically not clearly separated,
in some regions of the flow there will exist Lagrangian drops that can be significantly larger than the local flow solver grid
cells. Whether the thus incurred, spatially confined error is of significance depends on the actual application.

Using the RLSG method to track the phase interface offers an additional way to mitigate the potential problem. Because the
phase interface is tracked on a separate grid which can be refined independent of the flow solver grid, sub-flow solver phase
interface scales can be resolved and tracked. However, in flows that involve surface tension forces, significant refinement of
the RLSG grid relative to the flow solver grid by typically more than 64 RLSG grid cell per flow solver grid cell, necessitates the
use of additional models to accurately capture their sub-flow solver effect and avoid unphysical interface artifacts [28].

In cases where the size inconsistency does play an important role, extensions to the standard Lagrangian point particle
approach can be employed. If the drop is smaller than the local flow solver cell, yet occupies a significant portion of it, vol-
umetric effects can be incorporated, see for example [29]. If the drops is larger than the local flow solver cell, the geometry of
the drop can be taken into account in the Lagrangian framework following the approaches in [30–32].

Although this paper focuses in the following on the level set method to track the phase interface, some guidance on how
to apply the procedure to other interface tracking methods like the Volume of Fluid method or marker particle tracking are
outlined in Section 2.5.
2.1. Identify and tag separated candidate structures

The first step in the coupling procedure is to identify each contiguous liquid structure and tag it by a unique identifier
number id. To simplify discussion of the parallel, multi-block algorithm, we will first introduce the serial, single block algo-
Fig. 1. Refined level set grid dual-narrow-band block and grid structure [25].



Fig. 2. Basic serial single block identification algorithm.
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rithm, summarized in Fig. 2. Here, nG is the total number of existing G-nodes in the narrow band structure. The algorithm is
based on the band generation algorithm introduced in [25]. After finding the first untagged node inside the liquid, i.e. the
first node with G > 0, the algorithm proceeds to grow inside the liquid in layers denoted by S and C until the continuous
structure is filled, see Fig. 3. Although this could be achieved using a recursive algorithm, the slightly more complicated iter-
ative scheme is preferred, in order to avoid the overhead typically associated with recursive function calls. These might
otherwise limit the size of the computational domain per processor. After filling the first continuous structure, the id tag
is increased, and the next untagged node inside the liquid is searched for. To allow for easy, fast access to all nodes belonging
to a specific liquid structure, lookup lists are generated during this growth phase.

The above outlined algorithm identifies and tags every node with G > 0. However, in the application envisioned here, not
all continuous liquid structures are candidates for identification and transfer. Depending on the application, varying accep-
tance/disqualification conditions can be defined. In the atomization scenario, these include maximum liquid volume and
Fig. 3. Basic serial single block identification algorithm steps (from top left to bottom right). Shaded areas indicate regions of G > 0, circled numbers are id-
tag numbers.
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shape conditions. To minimize the computational cost, it is imperative to notice and disqualify liquid structures that cannot
fulfill the acceptance conditions as early as possible. To achieve this, a running total of the id tagged liquid volume, center of
mass, and momentum/velocity
Vid ¼
X

tagi¼id

wiðGÞVGi
xid ¼

1
Vid

X
tagi¼id

xiwiðGÞVGi
uid ¼

1
Vid

X
tagi¼id

uiwðGÞiVGi
ð3Þ
is kept during the tag phase (see line 10 of Fig. 4). Here, wiðGÞ is the cell volume fraction of G-grid cell i calculated from the
level set field by an analytical formula [33,25], VGi

is volume of the G-grid cell i; xi is that cells centroid coordinate, and ui is
the fluid velocity at that point. Then, if at any time during the tag phase Vid > Vcut , the current drop can be disqualified, by
switching all id tagged nodes to a tag of �id. This is done using the previously generated lookup lists which can then be di-
rectly discarded since the continuous structure as a whole has been disqualified. Although tagging with �id still has to con-
tinue to exclude the complete continuous liquid structure, additional qualification checks and other drop calculations can
then be skipped. Fig. 4 summarizes this enhanced serial single block identification algorithm.

2.2. Multi-block identification and tagging: joining candidate structures

Splitting the single block computational domain into multiple blocks introduces several complications. For one, contin-
uous liquid structures might span several blocks and the above outlined identification algorithm cannot tag them with a un-
Fig. 4. Enhanced serial single block identification algorithm.



Fig. 5. Basic multi-block identification algorithm. Steps I–IV are the block local steps and steps V and VI are the joining steps. Shaded areas indicate regions
of G > 0.
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ique identifier. Irrespective, to use the identification algorithm in Fig. 4 in the multi-block case, only two modifications are
required. First, the loop starting in line 2 has to be replaced by two loops: the outer one over all blocks, and the inner one
over all existing G-nodes within the current block. The second modification is due to the fact that the iterative growth algo-
rithm might grow outside the local block structure. Assuming that each block is surrounded by at least one layer of ghost
nodes, a potential C neighbor of an S node might be inside the first ghost layer. If this is the case, this ghost node will
not be marked as C and no drop calculations will be performed for this node, however it will be added to the lookup list
for the current id-tagged drop. Fig. 5 depicts in sub-figures I–IV the situation after the modified single block identification
algorithm in the multi-block case. The continuous drop split into two by the underlying multi-block structure is tagged
by different id tag numbers. These drop parts thus have to be joined giving them one unique identifier tag. Note that should
a disqualification condition be met in any of the blocks, that local id tag will be negative.

Before we discuss how to join the differently tagged parts of the continuous drop, let us first look at what happens if the
blocks are distributed among different processors. In that case, each processor will use a locally unique id tag. After tagging
all G > 0 regions with a locally unique id-tag, each processor determines a global tag offset and makes all its tags globally
unique by adding the processor’s tag offset to the local id number. To maintain the negative id-tag of rejected structures, this
is only done for drop tags with id > 0.

Fig. 6 summarizes the algorithm to join differently tagged parts across multiple blocks of the same continuous drop. It
applies irrespective whether these blocks are local or distributed amongst different processors. We first update the ghost
node values of the tag numbers by synching their matching block’s internal node tag numbers, see also step V in Fig. 5. If
the blocks are local to a single processor, this just involves a local copy, however, if the blocks are distributed amongst dif-
ferent processors, this involves a communication step. Then, for each local block, we loop over the block boundary adjacent
nodes with G > 0 and id > 0 and check if the neighboring ghost cell contains an identifier tag ðidgÞ smaller than the local node
identifier tag ðidbÞ. If this is the case, all block local nodes with tag idb are changed to the smaller ghost node idg-tag, see also
Fig. 6. Parallel, multi-block tag synchronization algorithm.
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step VI in Fig. 5. We use the previously generated lookup lists to do this task efficiently. If any drops changed their id-tag in
this manner, we need to redo the above process until globally, no drops changed their id-tags. Numerical experiments have
shown that in all our test cases and applications to date, only between 2 and a maximum of 6 of these ‘‘redos” are required.

2.3. Gathering and removing structures

After the completion of the joining step, continuous liquid structures split across arbitrarily many blocks and processors
will have a common unique identifier tag id, however, their properties like volume or center of mass are still split amongst
blocks and processors. Due to the unique identifier, it is however easy to join each structure’s volume, center of mass, and
momentum/velocity by simply performing a global reduce operation, yielding V 0id; x0id, and u0id. Next, using V 0id, an additional
disqualification check using the threshold volume Vcut is performed, further narrowing the list of potential transfer candi-
dates. Then, each joined structure’s eccentricity measure can be estimated as
eid ¼ max
tagi¼id

kxi � xidk
maxðDxGi

;RidÞ
; ð4Þ
where the maximum is taken over all nodes belonging to the id-tagged structure. Note that this is a first order approximation
to Eq. (2), allowing a further narrowing of the list of candidate structures to those with eid 6 ecut .

Unfortunately, however, V 0id; x0id, and u0id do not accurately reflect the structures’ true values and are only estimates for the
following reason. The identifier algorithm outlined in Section 2.1 considers only nodes with G > 0, and thus all drop prop-
erties are calculated using only these nodes. However, as can be seen from Fig. 7, even nodes with G < 0 can contribute to the
liquid volume of the drop and thus must not be neglected.

Simply including neighbor G < 0 nodes of the drop into the volume calculation, Eq. (3), will erroneously include liquid
patches belonging to other drops, as can be seen in the example of Fig. 7 for the non-shaded region of the right panel.
The way to avoid this problem is to follow the algorithm outlined in Fig. 8. It is based on the simple fact that the drop’s liquid
volume has to be equal to the difference of the total liquid volume before and after the drop’s removal from the domain. To
remove the drop from the domain, it is sufficient to simply switch the sign of all G > 0 nodes belonging to the drop to �G.
This can be done efficiently by using the lookup tables generated in the identification phase. Note that these lookup tables
Fig. 7. Split of liquid volume of a drop between G > 0 nodes (solid circles) and G < 0 nodes (open circles).

Fig. 8. Parallel algorithm to determine candidate structure liquid volume.
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include G > 0 nodes in the ghost cell layer of each block exactly for the reason of being able to switch their sign here. This
allows for an accurate liquid volume calculation inside each block, even if only a small part of the drop reaches within it. A
final global reduce operation can then determine the liquid structures true Vid; xid, and uid.

While it is possible to perform an additional, now accurate, acceptance/disqualification check against the structure’s true
values, a disqualification at this stage would require the re-insertion of the already removed structure into the level set rep-
resentation, by switching back all the structure’s prior G > 0 nodes, now set to �G, back to their original G values. In numer-
ical experiments and actual applications to atomization cases, however, it was found that the difference between Vid and V 0id
as well as eid and e is small and decreases under grid refinement, see for example test cases d4g1 and d4g2 in Section 3.1. In
light of the fact that in actual applications to atomization simulations, the chosen threshold values are estimates, it is thus
legitimate to base the disqualification condition on the close, but not exact estimates V 0id and eid. However, to preserve liquid
volume/mass during transfer, the true Vid has to be used for the inserted Lagrangian drop, necessitating the use of the above
algorithm.
2.4. Lagrangian to Eulerian transfer

The prior sections discuss the transfer of Eulerian tracked liquid structures into the Lagrangian description. For complete-
ness, the following briefly outlines the reverse case which might be necessary because of drop growth due to Lagrangian
drop/drop collisions, Lagrangian drop collision with tracked structures, indicated by
GðxdÞ < Rd; ð5Þ
and situations where Lagrangian drops migrate from flow solver grid regions of low resolution, where the drop’s radius is
smaller than the local grid spacing, into regions of high resolution, where the drop’s radius becomes significantly larger than
the local flow solver grid spacing.

Transfer from the Lagrangian to the Eulerian description of the mass of a drop with radius Rd and center of mass xd can be
achieved by simply re-evaluating the local level set field as
GðxÞ ¼maxðGðxÞ;Rd � kx� xdkÞ: ð6Þ
Transfer of the drop’s momentum is a more challenging task. The simplest possible model is to use the solid sphere assump-
tion inherent in many Lagrangian point particle methods by setting
uðxÞ ¼ ud 8 kx� xdk 6 Rd: ð7Þ
While this does conserve momentum during transfer, it relies on the pre-transfer gaseous velocities to be consistent with the
solid sphere assumption and adequately resolved. This can be ensured by using the Lagrangian point particle extensions de-
scribed in [30–32].

More advanced models for the post-transfer velocity field can be developed taking for example the internal circulation of
the drop or the drag induced gaseous flow field around the drop into account. These models are more challenging and are left
to future studies.
2.5. Application to other tracking methods

The algorithms presented in this paper are based on tracking the phase interface using a level set method and rely on the
fact that the presence of the phase interface is identifiable by a sign change in the level set scalar value. One option to use the
presented methods in the case of Volume of Fluid or marker particle based interface tracking is thus to first reconstruct a
binary marker function on a fixed grid. The identification and joining algorithms of Sections 2.1 and 2.2 can then be used
directly as presented. In the case of the Volume of Fluid method, running totals of each structure’s volume can be directly
calculated using the Volume of Fluid scalar, whereas in the case of marker particles, appropriate volume calculation methods
have to be employed.

In the gathering step, Section 2.3, one complication arises in identifying a drop’s liquid volume associated with non-po-
sitive marker function values, see Fig. 7. While level set methods offer an easy way to deal with this, Volume of Fluid meth-
ods would have to use geometric reconstruction like PLIC to identify which volume fraction w > 0 belongs to which separate
liquid structure.
3. Results

3.1. Test cases

This section presents a range of artificial test cases to verify the proposed methodology and to ascertain its performance
and parallel scalability. Eight different cases are analyzed using four different interface geometries. In each, a unit sized cube
is considered in which N spheres are randomly distributed between 0:1 < x < 0:9.
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Interface geometries d1, d2, and d3 consist of Nd1 ¼ 1000; Nd2 ¼ 5000, and Nd3 ¼ 25;000 monodisperse spheres of radius
R ¼ 1=128, whereas geometry d4 consists of 5000 polydisperse spheres with random radius between 1=512 6 R 6 1=32. The
resulting interface geometries are shown in the left column of Fig. 9.
Fig. 9. Tracked phase interface geometry before (left) and after (right) drop identification and identified Lagrangian drops (center) for cases d1g1, d2g1,
d3g1, and d4g1 (from top to bottom).
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The total number of separated liquid structures M in each case is less than the number of seeded spheres N. This is due to
the fact that the randomly placed spheres can result in partial overlapping, creating dumbbell structures in the case of 2
spheres and ever more complex structure for increasing numbers of partially overlapping spheres. Table 1 thus gives the
number of isolated spheres N1, dumbbell structures N2, and agglomerations resulting from 3 ðN3Þ and more ðN>3Þ spheres
for the geometry d1 that will be used for verification of the algorithm.

The four different interface geometries are each analyzed on two different G-grids. In the first, g1, the unit sized cube is
resolved by G-grid cells of size DxG ¼ 1=1024, in the second, g2, by G-grid cells of size DxG ¼ 1=2048. Block sizes in the RLSG
method are 323 and 643, respectively. Table 2 gives the resulting number of active G-grid nodes in the RLSG method in mil-
lions for each of the eight cases, ranging from 34 million up to 2.8 billion.

The threshold radius Rcut defining the threshold identification volume, Vcut ¼ 4=3pR3
cut , in sphere distributions d1, d2, and

d3 is Rcut ¼ 0:02, and Rcut ¼ 0:01 in distribution d4. The eccentricity measure threshold in all cases is ecut ¼ 1:5.
Fig. 9 shows the initial interface geometry of the seeded spheres, the identified and transferred Lagrangian drops, and the

remaining tracked interface geometry after identification and removal. Tables 3 and 4 quantify the corresponding identified
and transferred drops. Considering cases d1g1 and d1g2 (the difference being only the employed G-grid resolution) pre-
sented in detail in Table 3, out of the initially seeded 982 separated structures, only 967, respectively 971 are identified
and removed. In the d1g1 case, 953 out of 965 single sphere structures, 13 out of 16 dual-sphere structures, and the single
triple-sphere structure are removed. In addition 9 dual-sphere structures are not removed, which are shown in the top right
of Fig. 9. What is the reason that not all seeded single and dual-sphere structures are identified and removed?

The reason lies in the way fixed grid methods, like the level set method, handle topology changes. In the level set method,
as soon as two interfaces enter into the same cell, the topology is changed automatically due to the fact that the level set
scalar is single valued. While this is a desired behavior in most applications, it is a limiting discrepancy in some. To avoid
it, multiple level set scalars would have to be defined. In the d1 distribution, a total of 6 sphere pairs have surfaces less than
the g1 grid resolution apart. Thus, although theoretically these result in 12 separate spheres, in the numerical g1 level set
Table 4
Drop identification results: total number of removed ðmÞ and seeded ðMÞ structures, minimum ðRminÞ and maximum ðRmaxÞ equivalent volume sphere radius of
removed structures, and wall time tnp¼256 used to identify and remove the liquid structures using 256 processors.

Case m M Rmin � 103 Rmax � 103 tnp¼256 ðsÞ

d1g1 967 982 7.7965 11.027 0.0796
d1g2 971 982 7.8091 11.033 0.3624
d2g1 4437 4627 7.7965 11.138 0.4171
d2g2 4469 4627 7.8091 11.140 1.8653
d3g1 12753 17459 7.7947 13.046 1.9265
d3g2 13305 17459 7.8090 13.203 11.6015
d4g1 753 2433 1.9641 10.105 0.8696
d4g2 760 2433 1.9598 10.032 5.7023

Table 3
Drop identification verification results: number of structures removed ðmÞ and seeded ðMÞ, number of single sphere structures removed ðn1Þ and seeded ðN1Þ,
number of multi-sphere structures removed ðn>1Þ and seeded ðN>1Þ, and number of disqualified structures nDQ .

Case m M n1 N1 n2 N2 n3 N3 nDQ

d1g1 967 982 953 965 13 16 1 1 9
d1g2 971 982 957 965 13 16 1 1 7

Table 2
Number of active G-grid nodes in millions for each case.

DxG d1 d2 d3 d4

g1 1/1024 34 155 495 410
g2 1/2048 162 763 2809 2736

Table 1
Initial sphere distributions for geometry d1, with N the total number of seeded spheres, Ni the resulting number of structures consisting of i spheres, and M the
resulting total number of separated structures.

N N1 N2 N3 N>3 M

d1 1000 965 16 1 0 982



Fig. 10. Impact of grid resolution on interface topology of two close spheres: dumbbell structure on coarse grid for d1g1 (left), separated spheres on fine
grid for d1g2 (center), and transferred Lagrangian drops for d1g2 (right).
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representation, they are 6 joined dumbbells, see Fig. 10. The number of existing single sphere structures on the g1 grid is thus
not 965, but instead 965 � 12 = 953, the exact number of identified and removed single sphere structures. The correct num-
ber of dual-sphere structures on the g1 grid is then 16 + 6 = 22, again the exact number of removed and disqualified dual-
sphere structures (13 + 9). A consequence of this is that the number of removed single sphere structures is grid dependent.
Indeed, the finer g2 grid does not merge 2 of the pairs, see Fig. 10 for an example, and thus results in 4 more single sphere
structures and 2 less disqualified dual-sphere structures. It should be pointed out that it is in fact impossible to achieve grid
independency in the general case, since the distance between surfaces belonging to different liquid structures can be infin-
itesimal small, requiring infinite grid resolution.

Next, let us consider the disqualified structures. They are disqualified not because their volume exceeds the threshold
volume, since it would take at least 16 partially overlapping spheres to disqualify a structure based on this criterium. Instead,
they are disqualified because they exceed the essentricity measure threshold. To explain this, consider two spheres that are
just touching. The joined structure will have an essentricity measure of e ¼ 2=21=3 ¼ 1:587 exceeding the threshold value of
ecut ¼ 1:5. Indeed, as can be seen from Figs. 9 and 10, all 9 non-transferred dumbbell structures fall into this category. Note
that these 9 structures include the aforementioned 6 artificially joined dumbbells for the g1 grid. In the g2 grid case, two of
these are no longer joined, they are thus no longer disqualified and are instead transferred as 4 single sphere structures, see
Fig. 10 for an example.

The above results are thus consistent with the prescribed initial seeding and thus verify the implementation of the pro-
posed algorithm.

Table 4 summarizes the results for all eight cases, listing the number of removed and seeded structures, m and M, respec-
tively, the minimum and maximum radius of the resulting Lagrangian drops, and the wall time taken to identify and remove
the liquid structures using 256 processors. Again, due to the above outlined arguments, the total number of identified and
removed structures can be significant less than the number of initially seeded structures. In the d2 and d3 cases, this is for
Fig. 11. Observed parallel speedup for grid g1 (top row) and grid g2 (bottom row) and distribution d1, d2, d3, and d4 (from left to right) with respect to the
lowest number of processors the individual case would run on. Line denotes optimum scaling.



756 M. Herrmann / Journal of Computational Physics 229 (2010) 745–759
the most part due to the large number of structures violating the eccentricity measure constraint. In the d4 distribution,
structures are mostly disqualified since they violate the volume constraint. In fact, only 1387 out of the initially seeded
5000 spheres of the d4 distribution have a radius less than Rcut and would be candidates for transfer.

Due to the employed second order accurate volume calculation algorithm [33,25] the obtained Rmin values are not equal to
the seeded minimum sphere radii, but rather approach it with second order convergence. The maximum radius Rmax in the d4
distribution cases, exceeds the threshold value of Rcut slightly for the reasons discussed in the previous section. The overshoot
is grid dependent and converges in the shown manner under grid refinement.

Finally, Fig. 11 shows the observed parallel speedup for each of the eight cases. Results within each case are scaled assum-
ing optimum speedup for the smallest number of cores the case would run on. Results were obtained using Arizona State
University’s HPCI cluster Saguaro2, employing Intel EM64T Xeon E54xx (Harpertown) quad-core processors running at
2830 MHz using Infiband interconnects and 2 GB of memory per core. Actual wall clock execution times running on 256
cores are listed in Table 4. Excellent scalability is observed up to the maximum number of cores, 2048, that were available
Table 5
Operating conditions.

Gas density qg 25 kg=m3

Gas viscosity lg 1:78� 10�5 kg=ms
Liquid density ql 850 kg=m3

Liquid viscosity ll 1:7� 10�3 kg=ms
Surface tension coefficient r 0.05 N/m

Injector diameter D 100 lm
Mean injection velocity U 100 m/s
Injection Reynolds number Re 5000
Injection Weber number We 17000

Computational domain 21D� 4D� 2p
Minimum Dx flow solver D=100 ¼ 1 lm
DxG RLSG solver D=256 ¼ 0:39 lm
Flow solver grid size 24 million
RLSG max active nodes 403 million

Fig. 12. Atomization of turbulent liquid jet 10 ls after start of injection. Liquid core and spray (top), tracked phase interface of liquid core (center),
Lagrangian tracked spray (bottom).
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for benchmarking. In the most demanding test case d3g2 involving more than 2.8 billion active G-nodes, wall clock execution
time on 2048 cores is less than 2 s, demonstrating the efficiency of the proposed algorithm and its suitability for large scale
simulations.

3.2. Detailed simulation of the atomization of a turbulent liquid jet

To demonstrate the applicability and performance of the proposed methodology to relevant engineering applications, this
section presents results of a detailed simulation of the primary atomization of a turbulent liquid jet injected into still com-
pressed air under conditions relevant to diesel engine injection systems [18]. The operating conditions, computational do-
main, and grid resolution for this case are reported in Table 5.

Drop identification, removal from the level set tracked phase interface representation, and injection into the Lagrangian
spray model is performed at every time step. Details about the employed flow solver NGA can be found in [34], whereas the
employed RLSG level set solver and the required coupling procedures between the two solvers are presented in [25]. The
motion of the Lagrangian spray drops is described taking two-way momentum coupling between the discrete and continu-
ous phase into account by including a standard solid sphere drag force model [35], see [36] for further details. Neither vol-
umetric effects nor enhancements to the Lagrangian framework for drops larger than the local flow solver cells are taken into
account. Also, secondary atomization of the Lagrangian drops is not considered.

Figs. 12–14 show the atomizing liquid jet, the transferred Lagrangian drops, and the remaining tracked phase interface
geometry at 10, 15, and 20 ls after injection start. At 20 ls after injection, roughly 403,000 drops have been transferred into
the Lagrangian spray model. Drop diameters of these transferred drops range from the sub-micron size up to 10:8 lm. This is
significantly below the employed cut-off diameter, due to the fact that large drops are characterized by relatively large We-
ber numbers and thus are typically highly non-spherical. The eccentricity threshold thus prevents their transfer and they
instead continue to atomize in the tracked representation until surface tension forces are sufficient to pull the resulting
drops into near spherical shapes.

It should be pointed out that the use of the eccentricity measure threshold is critical in order to capture certain atomiza-
tion mechanisms. In the present simulation, atomization occurs to a large extend via the formation of ligaments stretching
Fig. 13. Atomization of turbulent liquid jet 15 ls after start of injection. Liquid core and spray (top), tracked phase interface of liquid core (center),
Lagrangian tracked spray (bottom).



Fig. 14. Atomization of turbulent liquid jet 20 ls after start of injection. Liquid core and spray (top), tracked phase interface of liquid core (center),
Lagrangian tracked spray (bottom).
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from the liquid surface, see Figs. 12–14. These typically separate from the liquid core and continue to undergo atomization
reminiscent of the Rayleigh mechanism. Since the volume contained in some of the separated liquid ligaments prior to their
continued breakup is small, they would be transferred into the Lagrangian description as a sphere were it not for the eccen-
tricity threshold measure that prevents their transfer. If transferred, the conjectured Rayleigh breakup would have to be fully
modeled. Instead, breakup can occur in the resolved description and does not require additional modeling.

Near the end of the simulation, when the tracked phase interface reaches its maximum extend, the total compute time
per time step needed to identify and remove separated structures is less than 0.9% of the total compute time of a single time
step. At earlier times, the required compute time is significantly less, since the tracked phase interface area is significantly
smaller. This demonstrates the high efficiency of the proposed method and its applicability to realistic problems.

4. Conclusions

In this paper we presented an efficient parallel multi-scale coupling procedure between a Eulerian level set method track-
ing an interface and a standard Lagrangian description of small scale, separated structures. The proposed method shows
excellent scalability, even to thousands of processors. It is applicable to large scale simulations involving billions of active
level set grid points, as demonstrated by the presented test cases. The proposed method has been applied successfully to
the detailed simulation of the primary atomization of a turbulent liquid jet under Diesel engine conditions, incurring only
a minimal overhead, but enabling the detailed simulation of the phase interface dynamics during primary atomization of
turbulent liquid jets generating hundreds of thousands of spray drops.
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